Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives

نویسندگان

  • Swagatam Das
  • Ajith Abraham
  • Amit Konar
چکیده

Since the beginning of the nineteenth century, a significant evolution in optimization theory has been noticed. Classical linear programming and traditional non-linear optimization techniques such as Lagrange’s Multiplier, Bellman’s principle and Pontyagrin’s principle were prevalent until this century. Unfortunately, these derivative based optimization techniques can no longer be used to determine the optima on rough non-linear surfaces. One solution to this problem has already been put forward by the evolutionary algorithms research community. Genetic algorithm (GA), enunciated by Holland, is one such popular algorithm. This chapter provides two recent algorithms for evolutionary optimization – well known as particle swarm optimization (PSO) and differential evolution (DE). The algorithms are inspired by biological and sociological motivations and can take care of optimality on rough, discontinuous and multimodal surfaces. The chapter explores several schemes for controlling the convergence behaviors of PSO and DE by a judicious selection of their parameters. Special emphasis is given on the hybridizations of PSO and DE algorithms with other soft computing tools. The article finally discusses the mutual synergy of PSO with DE leading to a more powerful global search algorithm and its practical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle swarm optimization: Hybridization perspectives and experimental illustrations

Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or...

متن کامل

An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants

Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...

متن کامل

Efficient Data Mining with Evolutionary Algorithms for Cloud Computing Application

With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...

متن کامل

Run Time Analysis regarding Stopping Criteria for Differential Evolution and Particle Swarm Optimization

Due to the growing complexity of todays technical systems optimization is becoming an important issue within the design phase. The applicability of optimization algorithms in automatic design processes is strongly dependent on the stopping criterion. It is important that the optimum is reliably found but furthermore no time or computational resources should be wasted. Therefore a run time analy...

متن کامل

Review Article A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

Particle swarmoptimization (PSO) is a heuristic global optimizationmethod, proposed originally byKennedy and Eberhart in 1995. It is now one of themost commonly used optimization techniques.This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008